
AI奥数大奖出炉,英伟达摘桂冠!14B破解34题暴击DeepSeek R1
AI奥数大奖出炉,英伟达摘桂冠!14B破解34题暴击DeepSeek R1AIMO2最终结果出炉了!英伟达团队NemoSkills拔得头筹,凭借14B小模型破解了34道奥数题,完胜DeepSeek R1。
AIMO2最终结果出炉了!英伟达团队NemoSkills拔得头筹,凭借14B小模型破解了34道奥数题,完胜DeepSeek R1。
Qwen 3还未发布,但已发布的Qwen系列含金量还在上升。2个月前,李飞飞团队基于Qwen2.5-32B-Instruct 模型,以不到50美元的成本训练出新模型 S1-32B,取得了与 OpenAI 的 o1 和 DeepSeek 的 R1 等尖端推理模型数学及编码能力相当的效果。如今,他们的视线再次投向了这个国产模型。
商汤最新升级的日日新SenseNova V6解锁的新能力—— 原生多模态通用大模型,采用6000亿参数MoE架构,实现文本、图像和视频的原生融合。从性能评测来看,SenseNova V6已经在纯文本任务和多模态任务中,多项指标均已超越GPT-4.5、Gemini 2.0 Pro,并全面超越DeepSeek V3:
统一多模态大模型(U-MLLMs)逐渐成为研究热点,近期GPT-4o,Gemini-2.0-flash都展现出了非凡的理解和生成能力,而且还能实现跨模态输入输出,比如图像+文本输入,生成图像或文本。
Llama 4刚出世就被碾压!英伟达强势开源Llama Nemotron-253B推理模型,在数学编码、科学问答中准确率登顶,甚至以一半参数媲美DeepSeek R1,吞吐量暴涨4倍。关键秘诀,就在于团队采用的测试时Scaling。
基于规则的强化学习(RL/RFT)已成为替代 SFT 的高效方案,仅需少量样本即可提升模型在特定任务中的表现。
推理增强型大语言模型LRM(如OpenAI的o1、DeepSeek R1和Google的Flash Thinking)通过在生成最终答案前显式生成中间推理步骤,在复杂问题解决方面展现了卓越性能。然而,对这类模型的控制仍主要依赖于传统的输入级操作,如提示工程(Prompt Engineering)等方法,而你可能已经发现这些方法存在局限性。
原生多模态Llama 4终于问世,开源王座一夜易主!首批共有两款模型Scout和Maverick,前者业界首款支持1000万上下文单H100可跑,后者更是一举击败了DeepSeek V3。目前,2万亿参数巨兽还在训练中。
语言是离散的,所以适合用自回归模型来生成;而图像是连续的,所以适合用扩散模型来生成。在生成模型发展早期,这种刻板印象广泛存在于很多研究者的脑海中。
DeepSeek新论文来了!在清华研究者共同发布的研究中,他们发现了奖励模型推理时Scaling的全新方法。DeepSeek R2,果然近了。